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Abstract—Daily climate data observations from more than 3000
climate measurement sites in the continental U.S. were mined
and analyzed to derive insights and trends from climate ex-
treme indices. Daily climate data observations were aggregated
by climate divisions and analyzed to derive a new climate
extremes indices data set (Threshold Exceedence Frequency,
TEF). Each climate division was statistically assessed for
the following elements: maximum and minimum temperature,
precipitation and snowfall. The climate data time series were
divided into 2 time intervals (1946-1980 and 1981-2015) and
the occurrence frequencies of various climate extreme indices
was statistically examined. Results revealed interesting insights
such as an increasing frequency of occurrence of night-time
temperatures in South-east US and decreasing frequency of
winter temperature and snowfall extremes in northern US.
The study also produced a new web-based visualization system
to analyze the results of the study. The visualization system
included interactive choropleth maps and charts to depict
spatiotemporal changes in various climate thresholds over time.

1. Introduction

Climate extremes are meteorological events that can
have significant impacts on human and natural systems.
Weather hazards, such as heat waves, drought, heavy thun-
derstorms, floods, hurricanes, occur frequently, and are a
threat to human lives and property. Understanding extreme
weather and climate events coupled with increased societal
vulnerability to such events, highlights a need to collect
and analyze data pertaining to extreme climate events and
to discover valuable decision-making insights using data
analytics.

The area encompassing the Continental United States is
vast with variable climate types and land cover. There are
approximately 26,000 climate measurement sites in Conti-
nental US. Climate is defined as long-term averages and
variations in weather measured over a period of several
decades [1]. Climate data conform to a time series nature.
This work examines data from nearly

This paper attempts to provide an assessment of climate
trends for the continental United States in recent decades
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Figure 1. Flowchart for data processing

by analyzing daily resolution climate data. The climate
elements analyzed include the following: maximum temper-
ature, minimum temperature, precipitation, and snowfall. In
addition, a data visualization system has also been devel-
oped to depict climate trends over the past 70 years. The
visualization system is hosted at http://dcat.srcc.lsu.edu.

2. Data and Methodologies

Figure 1 depicts a flowchart for data processing. First,
daily climate data are obtained from the Applied Climate In-
formation System (or ACIS) [2]. The data are then grouped
by climate divisions, and extreme frequency data are gen-
erated by setting some thresholds. Grouping by climate
divisions is conducted as follows: An average was computed
using data from at least 3 climate measurement sites - each
of the sites included data that spanned the time period 1946-
2015 and each of the climate measurement sites included
less than 10% missing values per year. So for example, to
compute for a say New York’s climate division 1, annual
frequencies of minimum temperatures exceeding 75 ◦F are
collected from at least 3 climate measurement sites and
a mean annual frequency value is computed. If less than
3 climate measurement sites were available for a climate
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division (likely due to excessive missing values), then that
climate division was excluded from the study.

The time-series extreme frequency data between 1946
and 2015 is divided into two independent samples, which
can be compared using non-parametric statistical hypothesis
test. Finally, p-value is obtained to be the representation of
significance of whether the two time-series climate data have
a similar distribution. In addition, the difference between the
means of the 2 time-series data for each of the thresholds
is also evaluated, to indicate an increasing 1 or decreasing
2 trend.

2.1. Data Source

This research used the daily climate data from the Ap-
plied Climate Information System (ACIS) [2], an Internet-
based system designed to facilitate the generation and dis-
semination of climate data products to users. ACIS is de-
veloped by the NOAA Regional Climate Centers (RCCs) to
manage the complex flow of information from climate data
collectors to end users of climate data information.

ACIS provides a web-services framework [3] that ac-
cepts time-series search parameters and returns climate
information in JavaScript Object Notation (JSON). JSON
is a common data format that can be absorbed by many
programming languages, including C, C++, Java, JavaScript,
Perl, R and Python. For each call, users specify a set of
parameter to describe the data being requested. After passing
these parameters to the server and accessing these climate
data, a climate data product is returned to users.

3210 climate stations in the continental United States
were used in this study. ACIS provides access to daily data
observations from more than 26000 Global Historical Cli-
mate Network’s (GHCN-D) [4] climate data measurement
sites in the US. However not all the sites span the entire time
period of 1946-2015. Additional criteria used for this data
analysis and study included the following: allow for less than
10% missing values for a station per year and every climate
division should have at least 3 climate measurement sites.
Once this criteria was applied, the number of valid stations
that fit these criteria reduced to 3210. These 3210 stations
are distributed to cover most of land in the continental
United States. By analyzing the climate data from these
stations, the trends of climate extremes can then be obtained
for the continental United States.

2.2. Climate Divisions in the US

The continental United States (U.S.) is subdivided into
344 climate divisions by the National Centers for Envi-
ronmental Information (NCEI, formerly known as National

1. In this work, increasing trend denotes that the more recent time
period (1981-2015) is experiencing higher mean frequency of days for the
threshold being analyzed, when compared to the prior time period (1946-
1980)

2. decreasing trend denotes that the more recent time period (1981-
2015) is experiencing lower mean frequency of days for the threshold being
analyzed, when compared to the prior time period (1946-1980)

1: Initialize array with climate thresholds,
ClimateExtremeIndices

2: for each climate extreme threshold, climext in
ClimateExtremeIndices do

3: for each climate measurement site stn in a climate division
do

4: Get climate data observations spanning 1946-2015.
5: Analyze climate observations and find frequency of oc-

currence exceeding threshold climext
6: end for
7: Group by climate division
8: Store each index for each climate division in a key-value

store (Redis)
9: end for

Figure 2: Methodology Used to Derive Climate Extreme
Indices For Each Climate Division

Climatic Data Center (NCDC)) [5]. Each climate division
represents nearly homogenous climatic regions. For each
climate division, monthly station temperature and precipi-
tation values are computed from the daily observations [6],
and their monthly temperature, monthly water equivalent
precipitation, Palmer Drought Severity Index, and Palmer
Hydrological Drought Index values have been generated for
a period dating back to 1895 ( [7] and [8]). Numerous
applications have used these divisional climate data, e.g.,
they are used to monitor the U.S. climate by the NCEI,
NOAA’s Climate Prediction Center, the National Drought
Mitigation Center, and others. These divisional data sets are
also used frequently in applied research [8], [9], [10].

A similar climate division based approach is used in this
spatiotemporal analysis. Climate measurement data from
individual sites were grouped to get a climate divisional
value.

The NCEI climate divisions dataset for Continental US
comprises of 327 out of the 344 climate divisions. Hence for
this study, climate measurement data from 3210 data sites
were grouped into 327 climate divisions to derive a climate
extreme indices data set. We call this the Threshold Exceed-
ing Frequencies (TEF) Dataset. To group a set of climate
measurement sites into a climate division, a minimum of
3 climate measurement stations were set as a requirement
and the frequency measurement (number of days exceeding
a threshold) was averaged for the climate division. Each of
the climate data sites in a climate division was also required
to have less than 10% missing values per year. Figure 2
provides a pseudocode or general methodology of how the
TEF data set is generated.

2.3. Threshold Exceeding Frequencies (TEF)
Dataset

The daily climate data from 3210 climate measurement
sites was used to generate the Threshold Exceeding Fre-
quency (TEF) data set. This derived data set was generated
by computing the annual number of days when the climate
observation exceeded a given threshold. The thresholds used
for this study was based on a combination of thresholds
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TABLE 1. THRESHOLDS TO GENERATE TEF DATASET

Element Thresholds
Maximum Temperature ≥105, ≥100, ≥95, ≥85
Minimum Temperature ≥80, ≥75, ≥70, ≥65, ≤36, ≤32, ≤28,

≤24, ≤15, ≤10, ≤5, ≤0
Precipitation ≥2, ≥4, sum
Snowfall sum

used in the CLIMDEX - Datasets for Indices of Climate
Extremes [11] and the Southeast chapter of the US National
Climate Assessment document, released in 2014 [12]. For
each threshold and a given climate division, there would be
70 values, corresponding to the 1946-2015 study period.

The thresholds used in this study included the following:
maximum temperatures greater 105 ◦F, 100 ◦F, 95 ◦F, or 85
◦F, minimum temperatures greater than 80 ◦F, 75 ◦F, 70 ◦F,
or 65 ◦F, minimum temperatures lower than 36 ◦F, 32 ◦F,
28 ◦F, 24 ◦F, 15 ◦F, 10 ◦F, 5 ◦F, 0 ◦F, precipitation values
greater than 2 inches or 4 inches, total annual precipitation
(in inches), and total annual snowfall (in inches), as shown
in Table 1. In addition, to ensure a serially complete data set,
climate divisions should have at least 3 climate measurement
sites, each of which, having no more than 10% of missing
values per year.

2.4. Analysis using Non-Parametric Statistical
Tests

The determination of the distribution form which a
sample is drawn is an important problem in many statis-
tical applications [13]. If the distribution is not known,
or is known to not follow a particular form, then non-
parametric statistics are appropriate. 3 non-parametric tests
- Wilcoxon Signed-Rank Test, Mann-Whitney U Test and
Kolmogorov-Smirnov Test - were used to compare 2 time-
series comprising of the time periods 1946-1980 and 1981-
2015. These 3 tests were applied on each of the climate
indices and for each climate division in the Continental
US. For this study, the non-parametric tests were applied
to answer the question - are the frequency of occurrence of
days exceeding a given threshold different for the 2 time
periods and is the difference statistically significant? So in
other words, as an example, if one is looking at minimum
temperatures exceeding a threshold of 75, are the 2 time
series representing annual frequency of days exceeding this
threshold, statistically different or are they the same. The
difference between the means of the annual frequencies for
the 2 time series was also analyzed. A positive difference
indicates that there are more number of days where the
minimum temperature exceeds the threshold of 75 for the
time period 1981-2015 as compared to 1946-1980. If the p-
value obtained from the non-parametric test indicates a value
that is less than 0.05, then the 2 time series are considered
statistically significant and different.

Figure 3: Screenshot of data visualization system with chart
of maximum temperature

3. Data Visualization

3.1. Structure of Data Visualization System

To demonstrate the results of this study and to intuitively
help users access the climate extremes frequencies data set,
a data visualization system was developed. Typical users can
span domains such as climate science, agriculture, finance
and economics (commodity markets), recreation site man-
agers (such as those in the ski resort industry) and actuarial
science. This system will help users to query the climate
threshold exceedence frequencies derived in this study and
provides an interface to depict the statistical analysis con-
ducted.

The data visualization system contains a low latency,
robust memory database, a flexible real-time query system,
and a user-friendly web interface. The visualization system
includes the following: the querying options in the interface
receive a set of meta data and threshold parameters from the
user and this information is transmitted to the database. The
database stores the threshold exceeding frequencies (TEF)
data set. Once the data is retrieved from the database, it is
sent to the interface that includes a map and chart-based
visualizations.

Figure 3 displays the interface of the data visualization
system. It has a query panel where one can set input param-
eters and provides a choropleth map to show the distribution
of p-values for all the climate divisions in the Continental
US. Clicking on a climate division produces a line chart that
provides trends on whether the frequency of days exceeding
a certain climate frequency is showing an increasing trend
in the more recent time period (1981-2015) or a decreasing
trend.

The query panel of the visualization tool includes the
following: 1. an element selector which can select cli-
mate elements including maximum temperature, minimum
temperature, precipitation, and snow, 2. a climate extreme
threshold selector, 3. a statistic selector which can indicates
the non-parametric test used (Wilcoxon, Mann-Whitney,
Kolmogorov-Smirnov or K-S and Difference in mean fre-
quency of days between 1946-1980 and 1981-2015, 4. and
a moving average parameter slider which can select integers
from 1 to 20. These query panels are interactive and data is
refreshed based on the user input.
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Figure 4: Choropleth map of p-values using Wilcoxon for
Maximum Temperatures greater than 85 ◦F

Figure 5: Screenshot of data visualization system with differ-
ence choropleth map when maximum temperature is greater
than 85 ◦F

3.2. Choropleth Map

A choropleth map is a thematic map in which areas
are shaded or patterned in proportion to the measurement
of the statistical variable being displayed on the map [14].
The visualization system displays the results of the non-
parametric tests as a choropleth map. Each climate division
in the continental United States is shaded on the basis of
the p-value (corresponding to the application of Wilcoxon,
Mann-Whitney or K-S tests) or the difference of mean fre-
quency of days exceeding a certain threshold between the 2
time periods. For example, as shown in Figure 4, there is the
choropleth map about wilcoxon test p-value of the climate
dataset of climate divisions whose maximum temperature is
greater than 85 ◦F. In the choropleth map, the blue represents
that the p-value is greater than 0.1 and the 2 time series
are not statistically significant, the yellow color represents
climate divisions that had a p-value between 0.05 and 0.1
and red represents climate divisions that had a p-value that
was lower than 0.05 and the difference between the 2 time
series was statistically significant, and the green represents
climate divisions that had too many missing observations.

Figure 5 is the choropleth map for difference when
minimum temperature is greater than 85 ◦F. The red areas
means the frequencies in these places increase and the blue
areas means that in these decrease.

3.3. Line Chart

When a climate division in the choropleth map is
clicked, the line chart about the time-series extreme climate

Figure 6: Screenshot of line chart with the climate division
TX01 when maximum temperature is greater than 85 ◦F

data for the climate division is displayed to help users
access more detailed information. Figure 6 shows interface
about the chart, the green line represents climate extremes
frequencies data of the climate division, the blue dash line
represents the mean of the data, the red line represents
moving average line and users can set the parameter of
moving average line in the left panel.

When a mouse is moved over the chart, the closest value
is shown so that users can check all the value in the climate
extremes datasets.

4. Results and Analysis

4.1. P-value

In statistics, the p-value is a function of the observed
sample results (a test statistic) relative to a statistical model,
which measures how extreme the observation is [15]. The p-
value is defined as the probability of obtaining a result equal
to or ”more extreme” than what was actually observed, when
the null hypothesis is true [16]. A small p-value (typically ≤
0.05) indicates strong evidence against the null hypothesis,
so you reject the null hypothesis. A large p-value (> 0.05)
indicates weak evidence against the null hypothesis, so you
fail to reject the null hypothesis [17], [18], [19].

Table 2, Table 3, and Table 4 displays the number of
climate divisions with different statistic test p-value ranges,
including p-value ≤ 0.05, 0.05 <p-value≤ 0.1, and p-
value> 0.1. The left-most column in each of the tables
provides the names of each of the climate extreme indices
(Maximum temperature has been abbreviated as tx, tn repre-
sents minimum temperature, pc represents precipitation, and
sw represents snow). The percentages provided in parenthe-
sis indicate the percentage of climate divisions that show
an increasing trend of occurrence of a climate extreme (in
other words, the difference between the extreme frequency
of occurrence for the 2 time periods studied was positive).
In other words, a high percentage value indicates that there
are more number of climate divisions where the frequency
of occurrence of a given climate extreme is greater in the
recent time period of 1981-2015 as compared to the time
period of 1946-1980. Similarly, a small percentage value for
climate extreme thresholds such as minimum temperatures
less than 10 indicates a declining trend for the most recent
time period of 1981-2015.
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TABLE 2. ANALYSIS OF RESULTS USING WILCOXON - BREAKDOWN OF

CLIMATE DIVISIONS BASED ON P-VALUES AND THE PERCENTAGE OF

CLIMATE DIVISIONS WITH AN INCREASING TREND (THE LABEL OF

‘MISSING’ INDICATES CLIMATE DIVISIONS FOR WHICH P-VALUES

COULD NOT BE COMPUTED DUE TO UNAVAILABILITY OF DATA)

<=0.05 >0.05 >0.1 Missing
tx>=105 7 (57%) 10 (8%) 306 (43%) 4
tx>=100 33 (39%) 19 (63%) 271 (39%) 4
tx>=95 50 (30%) 25 (32%) 248 (38%) 4
tx>=90 64 (12%) 39 (26%) 220 (4%) 4
tx>=85 124 (1%) 43 (19%) 156 (38%) 4
tn>=80 39 (95%) 4 (75%) 280 (51%) 4
tn>=75 106 (95%) 21 (95%) 196 (66%) 4
tn>=70 124 (97%) 27 (93%) 172 (77%) 4
tn>=65 107 (96%) 25 (80%) 191 (80%) 4
tn<=36 161 (2%) 29 (14%) 133 (29%) 4
tn<=32 168 (2%) 30 (7%) 125 (32%) 4
tn<=28 132 (2%) 41 (7%) 150 (27%) 4
tn<=24 132 (1%) 41 (0%) 150 (21%) 4
tn<=15 113 (0%) 35 (0%) 175 (16%) 4
tn<=10 100 (0%) 35 (0%) 188 (17%) 4
tn<=5 78 (0%) 30 (0%) 215 (21%) 4
tn<=0 69 (0%) 22 (0%) 232 (20%) 4
pc>=2 56 (98%) 39 (100%) 235 (79%) 0
pc>=4 13 (100%) 16 (94%) 301 (61%) 0
pcsum 87 (99%) 32 (94%) 211 (78%) 0
swsum 96 (4%) 23 (26%) 211 (3%) 0

TABLE 3. ANALYSIS OF RESULTS USING MANN-WHITNEY TEST -
BREAKDOWN OF CLIMATE DIVISIONS BASED ON P-VALUES AND THE

PERCENTAGE OF CLIMATE DIVISIONS WITH AN INCREASING TREND

(THE LABEL OF ‘MISSING’ INDICATES CLIMATE DIVISIONS FOR WHICH

P-VALUES COULD NOT BE COMPUTED DUE TO UNAVAILABILITY OF

DATA)

<=0.05 >0.05 >0.1 Missing
tx>=105 24 (75%) 13 (77%) 220 (52%) 70
tx>=100 40 (38%) 26 (50%) 250 (42%) 11
tx>=95 55 (27%) 23 (35%) 249 (38%) 0
tx>=90 66 (11%) 39 (26%) 222 (4%) 0
tx>=85 127 (9%) 43 (19%) 157 (38%) 0
tn>=80 57 (91%) 17 (94%) 167 (69%) 86
tn>=75 118 (93%) 25 (92%) 159 (74%) 25
tn>=70 135 (94%) 28 (93%) 157 (79%) 7
tn>=65 113 (93%) 24 (79%) 188 (81%) 2
tn<=36 165 (2%) 28 (14%) 134 (28%) 0
tn<=32 173 (2%) 28 (7%) 126 (32%) 0
tn<=28 135 (1%) 42 (7%) 150 (27%) 0
tn<=24 136 (1%) 41 (0%) 150 (21%) 0
tn<=15 120 (0%) 34 (0%) 170 (16%) 3
tn<=10 104 (0%) 38 (3%) 179 (17%) 6
tn<=5 82 (0%) 28 (0%) 205 (22%) 12
tn<=0 74 (0%) 25 (4%) 210 (21%) 18
pc>=2 59 (98%) 39 (97%) 231 (80%) 1
pc>=4 27 (89%) 19 (79%) 253 (68%) 31
pcsum 87 (99%) 32 (94%) 211 (78%) 0
swsum 96 (4%) 26 (23%) 206 (31%) 2

TABLE 4. ANALYSIS OF RESULTS USING K-S TEST - BREAKDOWN OF

CLIMATE DIVISIONS BASED ON P-VALUES AND THE PERCENTAGE OF

CLIMATE DIVISIONS WITH AN INCREASING TREND (THE LABEL OF

‘MISSING’ INDICATES CLIMATE DIVISIONS FOR WHICH P-VALUES

COULD NOT BE COMPUTED DUE TO UNAVAILABILITY OF DATA)

<=0.05 >0.05 >0.1 Missing
tx>=105 7 (57%) 4 (50%) 312 (44%) 4
tx>=100 24 (38%) 19 (47%) 280 (41%) 4
tx>=95 44 (25%) 19 (58%) 260 (37%) 4
tx>=90 51 (18%) 28 (18%) 244 (38%) 4
tx>=85 111 (8%) 42 (29%) 170 (35%) 4
tn>=80 31 (97%) 5 (60%) 287 (53%) 4
tn>=75 99 (95%) 19 (84%) 205 (69%) 4
tn>=70 98 (97%) 21 (86%) 204 (80%) 4
tn>=65 85 (95%) 28 (89%) 210 (81%) 4
tn<=36 149 (2%) 24 (4%) 150 (28%) 4
tn<=32 158 (2%) 29 (7%) 136 (30%) 4
tn<=28 132 (1%) 28 (14%) 163 (25%) 4
tn<=24 118 (1%) 31 (0%) 174 (18%) 4
tn<=15 103 (0%) 20 (0%) 200 (14%) 4
tn<=10 91 (0%) 24 (0%) 208 (15%) 4
tn<=5 70 (0%) 19 (0%) 234 (20%) 4
tn<=0 52 (0%) 20 (0%) 251 (18%) 4
pc>=2 42 (98%) 27 (100%) 261 (81%) 0
pc>=4 11 (100%) 8 (100%) 311 (62%) 0
pcsum 77 (100%) 38 (89%) 215 (79%) 0
swsum 86 (9%) 30 (17%) 214 (29%) 0

Some key observations from this analysis can be sum-
marized as follows:

• Thresholds corresponding to minimum temperature
(night-time temperatures) had a large number of
climate divisions that indicate significant change.
For example, for tn >= 75, using the Wilcoxon
Test (see Table 2), 118 out of 324 climate divisions
had a p-value of less than 0.05 and 95% of these
118 climate divisions indicated an increasing trend
(an increasing frequency of occurrence of minimum
temperatures greater than 75). This analysis indicates
that in recent time periods, there have been more
days with higher night-time temperatures.

• Similarly there is a decreasing trend in the frequency
of occurrence of low minimum temperatures (win-
ter temperatures). In other words, there are fewer
number of days with minimum temperatures less
than a given threshold. For example, Table 3 lists
for tn <= 10, 91 climate divisions that have a
statistically significant p-value of less than 0.05.
More importantly, all 91 climate divisions indicate
a declining trend of minimum winter temperatures.

• Extreme high precipitation events show an increas-
ing trend as indicated in Tables 2, 3 and 4.

• There is a declining trend in snowfall totals (as
indicated in Tables 2, 3 and 4).

7 climate extreme thresholds - maximum temperature ≥
95◦F, minimum temperature ≥ 75◦F, minimum temperature
≤ 32◦F, minimum temperature ≤ 0◦F, precipitation ≥ 2
inches, annual total precipitation, annual total snowfall - are
now analyzed further.
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Figure 7: Distribution of difference and p-value of climate
divisions in continental U.S. when maximum temperature is
greater than 95 ◦F, for the 2 time series - 1946-1980 and
1981-2015

4.2. Maximum Temperature is Greater than 95 ◦F

Figure 7 is the scatter plot of all climate divisions in the
continental U.S. for the number of days when maximum
temperature is greater than 95◦F. x axis represents p-value,
y axis represents the difference between the means of two
time-series (1946 - 1980 and 1981 - 2015). Green points
in the scatter plot represent p-values from the Wilcoxon
Test, purple points represent Mann-Whitney Test and brown
points represent Kolmogorov-Smirnov (K-S) Test.

To interpret the scatterplot, p-values close to 0 means
that the difference between the 2 time-series is statistically
significant. A positive difference means the frequencies are
indicating an increasing trend and a negative difference
indicates a decreasing trend.

Figure 8: Distribution of Wilcoxon test p-value when max-
imum temperature is greater than 95 ◦F

For this threshold (tx >= 95), based on the scatter plot
(Figure 7) and spatial maps (Figures 8,9,10,11), apart from
a few climate divisions in the High plains (in states such as
North and South Dakota, Minnesota, Nebraska) and coastal
California, that indicated statistical significant increasing
trends, overall there was not much evidence of an increasing
or decreasing trend for this climate threshold.

Figure 9: Distribution of Mann-Whitney test p-value when
maximum temperature is greater than 95 ◦F

Figure 10: Distribution of Kolmogorov-Smirnov test p-value
when maximum temperature is greater than 95 ◦F

4.3. Minimum Temperature is Greater than 75 ◦F

Figure 12 is the scatter graph of the all climate divisions
in the continental U.S. for frequencies when minimum tem-
perature is greater than 75 ◦F. In the figure, most of p-values
are close to 0, and most of differences between the 2 time
series are greater than 0. This indicates that the frequency
of occurrence of high minimum temperature is showing an
increasing trend for the time period of 1981-2015.

Figure 13, Figure 14, Figure 15, and Figure 16 display
p-values and differences in frequencies when minimum
temperature is greater than 75 ◦F. Based on these maps,
it is clear that vast areas in the South-east, South-central
and South-west parts of the Continental US are showing an

Figure 11: Distribution of difference when maximum tem-
perature is greater than 95 ◦F
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Figure 12: Distribution of difference and p-value of climate
divisions in continental U.S. when minimum temperature is
greater than 75 ◦F

Figure 13: Distribution of Wilcoxon test p-value when min-
imum temperature is greater than 75 ◦F

Figure 14: Distribution of Mann-Whitney test p-value when
minimum temperature is greater than 75 ◦F

Figure 15: Distribution of Kolmogorov-Smirnov test P-value
when minimum temperature is greater than 75 ◦F

Figure 16: Distribution of difference when minimum tem-
perature is greater than 75 ◦F

increasing frequency trend in minimum temperatures greater
than or equal to 75.

4.4. Minimum Temperature is Lower than 32 ◦F

Figure 17 is the scatter graph of the all climate divisions
in the continental U.S. for frequencies when minimum
temperature is lower than 32 ◦F. Figures 18, 19,20, 21

Figure 17: Distribution of difference and p-value of climate
divisions in the continental U.S. when minimum temperature
is lower than 32 ◦F
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Figure 18: Distribution of Wilcoxon test p-value when min-
imum temperature is lower than 32 ◦F

Figure 19: Distribution of Mann-Whitney test p-value when
minimum temperature is lower than 32 ◦F

show areas where days with minimum temperatures below
freezing point are decreasing in the recent time period and
the statistical difference between the 2 time series. Vast
portions of the regions west of the rockies, the mid-west
and the north-east portions of the US experienced fewer
days with less than 32 ◦F in the most recent time period of
1981-2015 as compared to 1946-1980.

4.5. Minimum Temperature is Lower than 0 ◦F

Figure 22 is the scatter graph of the all climate divisions
in the continental U.S. for frequencies when minimum tem-
perature is lower than 0 ◦F. In the figure, it is shown that

Figure 20: Distribution of Kolmogorov-Smirnov test p-value
when minimum temperature is lower than 32 ◦F

Figure 21: Distribution of difference when minimum tem-
perature is lower than 32 ◦F

Figure 22: Distribution of difference and p-value of climate
divisions in the contintental U.S. when minimum temper-
taure is lower than 0 ◦F

the number of days with extreme low minimum temperature
decreases sharply.

Figure 23, Figure 24, Figure 25, and Figure 26 display
p-values and differences of frequencies when minimum
temperature is lower than 0 ◦F. The frequencies of extreme
low minimum temperature mostly show declines.

Frequencies of extreme minimum temperature below 0
decrease sharply when the two time periods are compared.

Figure 23: Distribution of Wilcoxon test p-value when min-
imum temperature is lower than 0 ◦F
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Figure 24: Distribution of Mann-Whitney test p-value when
minimum temperature is lower than 0 ◦F

Figure 25: Distribution of p-values from Kolmogorov-
Smirnov when minimum temperature is lower than 0 ◦F

However, inlands areas shows little change for extreme low
minimum temperature. Frequencies of extreme low mini-
mum temperature in the west coastal area decreases more
rapidly than those in the east coastal area.

4.6. Annual Total Precipitation

Figure 27 is the scatter plot of the all climate divisions
in the continental U.S. for the total annual precipitation. In
the figure, it is shown that total annual precipitation amounts
is increasing in most of the country.

Figure 28 displays the differences in total annual precip-
itation between the 2 time series. As shown, precipitation
amounts have increased in inland areas from Oklahoma to

Figure 26: Distribution of difference when minimum tem-
perature is lower than 0 ◦F

Figure 27: Distribution of difference and p-value of total
annual precipitation in climate divisions in the Continental
U.S.

Figure 28: Distribution of difference of total annual precip-
itation

Missouri and in the northeast region. In contrast, annual
precipitation levels decreased in northwest and southeast
regions.

Overall, the frequency of occurrence of extreme high
precipitation events and total annual precipitation amounts
show an increasing trend. Compared to the western coastal
areas and southeast region, precipitation in inland areas and
northeast region show an increasing trend.

4.7. Annual Total Snowfall

Figure 29 is the scatter graph of the all climate divisions
in the continental U.S. for the total annual snowfall. In the
figure, it is shown that total annual snowfall decreases in
the most recent time series.

Figure 30 displays differences of total annual snowfall
sum. As shown, annual snowfall amounts show a decreasing
trend and snowfall amounts in the Pacific Northwest, Nevada
and Montana shows an increasing trend.

5. Conclusion

In summary, climate data from more than 3000 climate
stations in the continental U.S. between 1946 and 2015 ahve
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Figure 29: Distribution of difference and p-value of total
annual snowfall in climate divisions in the continental U.S.

Figure 30: Distribution of difference of total annual snowfall

been analyzed to develop a new climate extremes indices
dataset (TEF). Extensive statistical analysis was done to
compare the frequency of occurrence of climate extremes
between 2 time periods (1946-1980 and 1981-2015) and the
conclusions are summarized as follows:

• The frequency of occurrence of extreme high tem-
peratures did not yield any statistically significant
trends for most of the climate divisions analyzed.

• The occurrence frequency of extreme high minimum
temperatures shows an increasing trend in the most
recent time period of 1981-2015.

• The frequency of occurrence of extreme low mini-
mum temperatures shows a decreasing trend for the
recent time period of 1981-2015.

• Due to the frequency of occurrence of high max-
imum temperatures not changing much and high
minimum temperatures showing a sharp increasing
trend, the diurnal temperature range narrows down
across continental United States.

• The occurrence frequency of high precipitation
events shows an increasing trend for 1981-2015.
Total annual precipitation also shows an increasing
trend, especially in inland areas and in the northeast
region.

• In the Northern US states, total annual snowfall
amounts show a declining trend for the time period
of 1981-2015.
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